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ABSTRACT
Surgical patients aged 65 and over are facing a 2-10 times higher
risk of death after surgery. Early prediction of postoperative mor-
tality is essential, as timely and appropriate treatment can improve
survival outcomes. With the development of medical and computer
technology, numerous available health-related data can be recorded
for research. Among various patient indicators which may affect
the accuracy of prediction, it is necessary to find highly relevant
and efficient features. The aims of this study were to use machine
learning algorithms, specifically Bagging and Boosting Algorithms
(e.g. Random Forest, eXtreme Gradient Boosting), to predict the
postoperative 30-days mortality in surgical patients aged over 65,
and to identify the optimal features using genetic algorithm(GA).
This prospective study was developed and validated on the co-
hort from electronic health records (EHRs) of West China Hospital,
Sichuan University, which contained 7467 surgical patients (0.924%
mortality rate) who underwent surgery between July 1, 2019 and
October 31, 2020. Compared with models like the traditional logistic
regression model and the baseline ASA physical status, We found
that XGBoost with hyper-parameters had best performance based
solely on the automatically obtained features (area under the curve
[AUC] of 0.9318, 95% confidence interval [CI] 0.9041 - 0.9594). The
AUC of baseline ASA-PS was 0.6787 (95% CI 0.6471 - 0.7103) using
XGBoost. When both ASA-PS and the selected features are included
as inputs, XGboost achieved the AUC of 0.9345 (95% CI 0.9076 -
0.9613).
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1 INTRODUCTION
An estimated 313 million surgical procedures are undertaken world-
wide each year [1]. At least 4.2 million people worldwide die within
30 days of surgery each year [2]. The third greatest death contribu-
tor which accounts for 7.7% of all deaths globally is postoperative
death [3]. A large proportion of postoperative mortality occurs in a
small group of patients with high-risk characteristics, but of this
group, less than 15% are admitted to the intensive care unit (ICU)
postoperatively [4]. With limited infrustruture, prompt identifica-
tion of patients on the risks of postoperative mortality and need
for critical care monitoring after surgery are vital [5].

With the population ages, the proportion of elderly patients
undergoing surgery will continue to rise [6]. As elderly patients got
the high number of comorbidity, low tolerance, easy damage of vital
organs and poor recovery function, the risks of perioperative severe
complications and death in elderly patients are much higher than
that in young patients [7]. Many studies have demonstrated that
early intervention for comorbidity and surgical conditions in elderly
patients can help to reduce or even prevent serious perioperative
complications and improve prognosis [5] [8] [9] [10]. In the current
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healthcare environment, where health insurance funds are tight and
medical personnel is limited, early and rapid identification of elderly
patients at high risk of serious perioperative complications and
death, and then timely intervention with corresponding strategies,
are essential to improve patient outcomes and the allocation of
healthcare resources.

To identify people at risk of poor prognosis, most of the existing
traditional prediction models (such as logistic regression analysis)
and scoring systems are used for risk assessment. There is a lack
of a more generalized approach to assessing perioperative risk in
older patients.

In recent years, machine learning methods [11] [12] have been
gradually applied to the mining and analysis of multi-source het-
erogeneous medical big data from electronic medical records in
order to improve the performance of various models. There are
previous researches showed that machine learning may offer better
predictive performance when data input are abundant and variable
interactions are complex [13]. A vital key is to have approches to
rapidly identify patients who are at high risk and most in need
of manual intervention. The prediction models can help to pro-
vide strong basis for clinicians making decision and reasonable
allocation of public medical healthcare resources.

In this study, we implemented machine learning methods to
accurately predict postoperative mortality in elderly patients us-
ing available information from EHRs and achieved quantitative
assessment of perioperative risk. Genetic Algorithm [14] was used
to select available optimal features using data accumulated from a
structured data platform of West China Hospital, Sichuan Univer-
sity.

2 RELATEDWORKS
Many patients will choose surgery to cure a disease or to prolong
their lives, a significant growth in the demand for surgical services
will be result from the aging of the population [15]. Related studies
suggest short-term postoperative mortality varies from 1-3%, while
high risk surgery group accounts for 80% of the deaths [16] [17].
Postoperative mortality prediction is now a much researched filed.
There are several existing preoperative patient risk scores have
been developed for this purpose, such as the American Society of
Anesthesiologists physical status (ASA-PS), Preoperative Score to
Predict Postoperative Mortality (POSPOM), Surgical Outcome Risk
Tool (SORT), Charlson Comorbidity Index, and American College
of Surgeons National Surgical Quality Improvement Program (ACS-
NSQIP) [18] [19] [20] [21]. In order to create models of risk, some
of these tools need to leverage International Statistical Classifica-
tion of Diseases and Related Health Problems (ICD) codes which
means that data used for analysis are not available prior to the pro-
cedure. Previous studies discussed about their lack of precision at
the patient level. Scores like ASA score can not be fully automated
because it relies on the subjective judgement of clinicians who are
well trained [22] [23].

The most commonly used structured medical measurements can
be classified as numerical type and categorical type. With these
available indicators, many mortality prediction models based on
machine learning algorithms or deep learning algorithms were
proposed to evaluate patients risk of death. Machine learning (ML)

methods have bee proven to have potential in clinical risk prediction.
Pirracchio et al. used an ensemble ML technique which utilized
multiple algorithms to obtain better performance compared with
SAPS-II, APACHE-II, and SOFA [24]. Their approach showed an
AUC of around 0.88 which compared to AUC of 0.78 generated by
SAPS-II. To predict postoperative in-hospital mortality, Hill B L et
al. reported on the use of ML algorithms to create a fully automated
score [23]. They found random forest classifier outperformed other
traditional scores while using obtained features.

It is also important to select the best subset form abundant struc-
tured features. Filter methods, wrapper methods and embedded
methods are three main approaches to select features [25] [26].
Babatunde et al. detailed the application of a binary Genetic Algo-
rithm(GA) for dimensional reduction to enhance the performance
of classifiers [14].

These related works show that ML and GA techniques have
potential to predict postoperative mortality. However, patients in
these studies were specified with specific conditions or not from
Asian datasets. Therefore, the results can not respond well to Asian
elderly patients. As clinicians’ consensus account for a greater
proportion of feature selection, it is not conducive to breaking
out of the old framework. In summary, we proposed a mortality
prediction method which only using easy-to-extract perioperative
electronic health record data and is more broadly utilizable at Asian
hospital.

3 METHODS
3.1 Dataset
We presented the data source and study population in this section.
A single-center cohort prospective analysis was conducted, con-
sisting of 57,728 patients who underwent surgery between July
1, 2019 and October 31, 2020 from EHRs of West China Hospital,
Sichuan University. In our study, only patients aged 65 years or
above were included to predict the risk of mortality. The high-
quality records with sufficient amount of data measurements such
as patients’ demographics, comorbidity, operative characteristics,
and preoperative laboratory tests which can influence the outcome
were extracted. Preoperative comorbidity were recorded using In-
ternational Statistical Classification of Disease and Related Health
Problems, 10th Revision (ICD-10) codes [27]. Briefly, in the first
stage, we extracted data into 4 main tables structured around 4
distinct concepts: patients, preoperative data, intraoperative events
and postoperative events. Data in these tables are then used to
populate a series of measures and metrics such as ASA physical
status, glucose, and others. All patients’ data were anonymized
prior to extraction and analysis. This study was approved by the
ethics review board of West China Hospital, Sichuan University.

3.2 Model Endpoint Definition
We trained classification models to predict the postoperative mor-
tality within 30 days as a binary outcome. The death flag of each
patient was recorded in the postoperative events table. We used the
date of postoperative event minus the date of the end of surgery to
obtain how many days after the surgery. This classification was set
to true if, within 30 days, death flag was recorded as ‘1’. Because of
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Figure 1: The Detailed Process of Data Extraction.

the the possibility of false positive samples, we had clinicians from
Huaxi hospital to validate one subset of samples.

3.3 Inclusion and Exclusion Criteria
At the unique patient level, 57,728 patients who underwent a
surgery between July 1, 2019 and October 31, 2020 were included
in the study. Cases on patients older than 65 yr of age and younger
than 100 yr of age were included, which contains 13,803 unique pa-
tients. Because a patient may have multiple admission records, only
the first admission was analyzed. Some patients underwent more
than one procedure during their hospitalization, a phenomenon
that occured more frequently in the high-risk patient population.
The final study included all surgeries which had postoperative
events records and met the above criteria, which contains 7,467
unique patients and 7,717 unique surgeries. We list the process of
the inclusion and exclusion for overall data set in Figure 1

We performed an analysis to verify that including these surg-
eries did not unduly affect the distribution of correlations between
pairs of surgeries compared to only including the first surgery of
each admission. For our data set and first-surgery-only data set,
we randomly selected 100,000 pairs of surgeries from two different
patients in each data set, and then calculated the Pearson correla-
tion coefficients [28], using the features including AGE, GLUCOSE,
WHITE BLOOD CELL COUNT, PULSE, WEIGHT, BMI, BILIRUBIN
TOTAL, CREATININE, POTASSIUM, ALBUMIN, HEIGHT, SPO2,
GENDER, ASA_STATUS, CARDIAC FUNCTION, MOVEMENT
EQUIVALENT, HYPERTENSION, and SMOKE [23]. The distribu-
tion of correlation coefficients was shown in Figure 2 which could
indicate that the distributions were similar. Note that, to against
information leaks, patients appear in testing set were removed from
training set.

3.4 Data Preprocessing
Each surgical record corresponded to a unique hospital admission
ID. As it is common with missing data in the records, before feature
selection, we removed the variables with more than 30% missing to

Figure 2: Correlations between Pairs of Surgeries in the
Same Admission and Randomly Selected Pairs of Surgeries.
Violin Plot Comparing the Distribution of Pearson Corre-
lation Coefficients for 100,000 Randomly Sampled Pairs of
Surgeries from the Set of All Surgeries (Left, in Red) and
from the Set of only the First Surgery in Each Admission
(Right, in Blue). The Distributions Were Identical.

facilitate and ensure the accuracy of the research. For numeric vari-
ables with less than 5% missing data or randomly missing data, we
filled the missing values with the median value for the respective
feature. For variables with a missing rate between 5%-30%, SoftIm-
pute algorithm [29] was carried out to fix the problem leveraging
the similarity of groups of patients. If the observation value was
clinically beyond the top and bottom 1% of the actual distribution,
we set these outliers to random numbers from 1% to 25% percentiles
and 75% to 99% percentiles, respectively. In addition, we standard-
ized the numerical data. After the data is centralized according to
the mean value, and then scaled according to the standard devia-
tion, the data followed the normal distribution with a mean of 0
and a variance of 1. For categorical features, missing values were
treated as a new category. Categorical features were converted into
numerical values by one-hot encoding scheme.

To make sure there were similar mortality rates for training and
testing, we extracted death samples and survival samples separately,
then randomly divided both sample sets into a large set (70%) and
a small set (30%). Finally, we merged the two large sample sets as
training set (70%, n = 5406) and merged the two small sample sets
as testing set (30%, n = 2311) while the same patient did not appear
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Table 1: Patient Characteristics Employed for Training and Testing Models. ‘n’ Denots the Number of Patients

Property Training data Testing data
Patient, n 5226 2241
Admission, n 5319 2285
Surgery, n 5406 2311
Average surgery numbers of one patient 1.034 1.031
Average admission numbers of one patient 1.018 1.02
Average surgery numbers of one admission 1.016 1.011
Patients with not just one admission, n (%) 180(3.44) 70(3.12)
Admissions with not just one surgery, n (%) 88(1.65) 26(1.14)
Mortalities, n (%) 45(0.83) 24(1.04%)
Mean age 72.1 71.8
Male patients, n (%) 3103(57.40) 1268(54.87)
ASA physical status 1, n (%) 11(0.20) 10(0.43)
ASA physical status 2, n (%) 2603(48.15) 1126(48.72)
ASA physical status 3, n (%) 2733(50.55) 1159(50.15)
ASA physical status 4, n (%) 54(0.99) 16(0.69)
ASA physical status 5, n (%) 5(0.09) 0(0)
Types of surgery, n (%)
Abdominal surgery 2992(55.35) 1276(55.21)
Orthopedic surgery 1003(18.55) 433(18.74)
Thoracic surgery 503(9.30) 188(8.14)
Cardiac surgery 251(4.64) 90(3.89)
Craniocerebral surgery 6(0.11) 5(0.22)
Other 651(12.04) 319(13.80)

in the same set to protect information from leaking. Table 1 was
made for the detailed patient characteristics information.

To solve the extreme imbalanced classification between the death
and survival( 0.89% mortality rate), we used the Synthetic Minority
Over-sampling Technique (SMOTE) algorithm [30] on training set
to synthesize new examples from the minority class. The SMOTE
implementation is provided by the imbalanced-learn Python library
in the SMOTE class [31]. We set a more balanced distribution with
500 dead samples and 5,361 surviving samples. To maintain the
natural outcomes, our testing set was not upsampled.

3.5 Model Input Features
Preoperative laboratory tests were the latest taken before the start
time of surgery. Surgery details included anesthesia type, surgery
type, duration of operation, ASA-PS class(under 6), vital signs(such
as systolic blood pressure (SBP), diastolic blood pressure (DBP) and
pulse), and others.

After data cleaning, we first got 177 initial available variables to
start feature selection. The subset of features obtained from feature
selection should be as small and effective as possible, in the mean-
time, improve but not reduce the accuracy of prediction. There
were two main purposes for feature selection in this study: 1) to
reduce model over-fitting and improve model generalization ability
by feature reduction; 2) to enhance the understanding between fea-
tures and feature values [32] [33]. The search strategies for feature
selection are classified as: complete search strategy (e.g. Breadth
First Search), heuristic search strategy (e.g. Sequential Forward
Selection) and stochastic search algorithm (e.g. Genetic Algorithm

[34] [35] [36]). To decide how many and which features we should
put into training, Genetic Algorithm (GA) was implemented to de-
termine the optimal features subset while using Decision Tree [37]
as estimator. The main operators of the genetic algorithms are re-
production, crossover, and mutation. We used DEAP to implement
GA [38]. For DEAP global variables of GA, we set 1) tournament
selection as selection operator with tournament size of 3, 2) Sin-
gle Point Crossover as crossover, 3) multiple Flip-bit mutation as
mutation operator with indpb (independent probability for each
attribute to be flipped) of 0.05. Population size was set to 100. Recur-
sive Feature Elimination(RFE) [39] was used to validate the selected
important features. The number of optimal features was 81 with
automatic tuning of the number of features selected with 5-fold
cross-validation. During the feature selection, we plotted (Figure
3) the test and validation classification accuracy to see how these
numbers changed as we getting close to the best feature subsets.

Combined with West China Hospital clinicians’ consensus, we
finally had 73 features (including ASA status) to be potentially
predictive of the postoperative mortality within 30 days. The full
list of features included basic demographic information such as
age, gender, and Body Mass Index; available obtained laboratory
tests prior to surgery, for example albumin and total bilirubin;
descriptive intraoperative vital signs, such as diastolic pressure
values; summary of drug and fluid interventions, such as total
fluid transfused; comorbidity, such as diabetes; and patient surgery
descriptions, such as surgery type. This study included the most
recent values of the variables prior to the surgery.
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Figure 3: Test and Validation Classification Accuracy.

To facilitate the analysis of the impact of different feature inputs
on prediction, we built 3 types of input. Type 1 included all the
73 features. Type 2 removed the ASA physical status score while
included other 72 features - as ASA score cannot be fully automated
until they are reviewed by a trained anesthesiologist. The baseline
models were also tested: Type 3 included only the ASA physical
status score. The details of all types can be found below.

3.6 Model Creation, Training, and Testing
This study considered 4 different models due to their widespread
use: Random Forests (RF), Logistic Regression (LR), XGBoost, and
Multi-Layer Perceptron (MLP). From Bagging and Boosting en-
semble learning algorithms, we chose 2 algorithms to develop this
study:

• RF [40] is a meta estimator that fits a number of decision tree
classifiers on various sub-samples of the datasets and uses
averaging to improve the predictive accuracy and control
over-fitting.

• XGBoost is an optimized distributed gradient boosting li-
brary designed to be highly efficient, flexible, and portable
[41]. XGBoost provides a parallel tree boosting that solve
many data science problems in a fast and accurate way. It is
a popular method used in medical field.

A benefit of using the above algorithms is that after trees are
constructed, it is relatively straightforward to retrieve importance
scores for each attribute. They have the property of ‘feature impor-
tance’ which is handy to get impurity-based feature importance.
Generally, we can find out how useful and valuable each feature
was in the construction of model. The 73 features and feature im-
portance are shown and described in Supplementary Appendix.
In addition, common linear and nonlinear classifiers were also in-
cluded:

• (3) Logical regression algorithm, which is a classic binary
classification algorithm, has good robustness to small and
medium-sized noises of data after the mapping of Sigmoid
function.

• (4) MLP, a feed-forward artificial neural network, can dis-
tinguish non-linearly distinguishable data [42]. An MLP is
characterized by several layers of input nodes connected as

a directed graph between the input nodes connected as a
directed graph between the input and output layers.

Model hyper-parameters were chosen by using Randomized-
SearchCV and GridSearchCV with five-fold cross validation on the
training set. One unique patient should not appear in both training
and testing fold, but only one fold. All 4 classifiers were set with
default parameters before parameter optimization. First, we set a
large range of values for the parameters in each model and used
RandomizedSearchCV with 200 iterations to search the best param-
eters. Next, a smaller range was determined based on the parameter
selected in the previous step, and then GridSearchCV was used to
fine tune the parameters. Since we used five-fold cross-validation
which meant that there were five divided data partitions for training
and testing. In this case, every one of the five partitions was treated
as a testing set only once and a training set four times. Through
multiple trials, average metrics could be obtained which helped to
get a better assessment of model performance.

We imported RandomForestClassifier, LogisticRegression and
MLPClassifier from scikit-learn [43]. The XGBClassifier was imple-
mented using the XGBoost package [41]. All performance metrics
were implemented by using Scikit-Learn.

Block bootstrapping was used to help generate confidence in-
tervals (CIs) for the performance metrics on test set. Prediction
correlation appears in surgeries from the same patient. Neverthe-
less, in order to avoid the lose of the correlation structure, instead
of sampling surgeries randomly, we sampled patients randomly,
and included all predictions in the bootstrap sample. We set this
procedure to repeat 1,000 times and calculated performance metrics
of each bootstrap sample. After these metrics got sorted, the 95%
CI was determined by selecting the 25th and 975th values of the
sorted metrics.

3.7 Evaluation Metrics
Receiver operating characteristic curves (ROC) is also know as sen-
sitivity curve. Each time a different threshold is selected so that
a set of FPR and TPR is obtained, with the FPR value as the hori-
zontal coordinate and the TPR value as the vertical coordinate, we
got ROC curve. It illustrates how the model performance varies
with the threshold value. Model performance was first assessed
using area under the ROC of 95% CI which was calculated using
bootstrapping with 1,000 samples. As we were dealing with im-
balanced data, accuracy should not be the only metric to dedicate
model performance. We also calculated Precision, Recall and F1 to
evaluate the performance of classifiers in a much better way. True
Positive (TP) is the number of truly classify as a positive, and False
Positive (FP) is the number of truly classify as a negative. False
Negative (FN) is the number of falsely classified as negative. True
Negative (TN) is the number of falsely classified as positive. Preci-
sion is the accuracy of the positive predictions. Recall is the ratio
of positive instances that are correctly detected. Combine precision
and recall into a single metric which is F1 score. We used sklearn.
metrics function to compute these scores. In the mean time, the
precision-recall curve was plotted and the performance of a model
was indicated by observing whether the curve reached the point in
the upper right corner. In this paper, all of this was implemented in
Python.
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Table 2: Area under the Receiver Operating Characteristic (AUROC) Curve. TheHighest AUROCAre Shown in Bold. TheMean
Value of the AUROC Is Shown, along with the 95% Confidence Interval (CI) in Parenthesis

Model/AUC (95% CI) Random Forests XGBoost Logistic regression MLP
ASA status 0.6782 ( 0.646 - 0.7104 ) 0.6787 ( 0.6471 - 0.7103

)
0.6759 ( 0.6431 - 0.7087 ) 0.6773 ( 0.6447 - 0.7098 )

Selected features 0.9955 ( 0.9937 - 0.9973
)

0.9318 ( 0.9041 - 0.9594 ) 0.8495 ( 0.8153 - 0.8836 ) 0.8725 ( 0.8272 - 0.9179 )

Selected + ASA status 0.9949 ( 0.9925 - 0.9972
)

0.9345 ( 0.9076 - 0.9613 ) 0.8514 ( 0.8181 - 0.8847 ) 0.8717 ( 0.8246 - 0.9188 )

Table 3: Performance Metrics for All Models Using Selected Features

Selected features
(95% CI)

Random Forests XGBoost Logistic regression MLP

Accuracy 0.9917 ( 0.9903 - 0.9932 ) 0.9937 ( 0.9922 - 0.9951
)

0.98 ( 0.9766 - 0.9835 ) 0.9808 ( 0.9771 - 0.9844 )

Precision 0.9865 ( 0.973 - 1.0 ) 0.9773 ( 0.9545 - 1.0 ) 0.6968 ( 0.5869 - 0.8066 ) 0.6989 ( 0.5854 - 0.8125 )
Recall 0.6909 ( 0.6364 - 0.7455 ) 0.7727 ( 0.7273 - 0.8182

)
0.473 ( 0.4182 - 0.5277 ) 0.5182 ( 0.4364 - 0.6 )

F1 score 0.816 ( 0.7778 - 0.8542 ) 0.8667 ( 0.8333 - 0.9 ) 0.5653 ( 0.5055 - 0.625 ) 0.5852 ( 0.5106 - 0.6598 )

4 RESULTS
4.1 Patient Characteristics
We contained 7,717 surgical records encompassing 7,467 patients
in this study. Patients were between the ages of 65 and 100 yr,
with a mean age of 72 yr. The postoperative 30-days mortality
was approximately 0.924%. ASA score of 3 was the most common,
comprising 50.5% of the data set. In Table 1, we provided further
information on patient characteristics.

4.2 Model Performance
To evaluate our models, we plotted 2 curves: ROC and precision-
recall curve. We bolded the best scores of each metrics.

Area under the ROC
The area under the ROC curve values of each model with dif-

ferent input features were recorded in Table 2. The ROC curve
of different models using selected features and ASA as input was
shown in Figure 4

Precision-recall
The precision-recall (PR) curve using the XGboost for the three

feature sets is shown in Figure 5. The PR curve of all models on
all-73-feature set are shown in Figure 6. Generally, the selected
feature set performed better than other two.

Calibration
Brier score is another evaluation metric used in this paper, which

calculated the mean squared error between predicted probabilities
and the actual values. The value of Brier score is always between 0.0
and 1.0, where a model with better performance has a lower brier
score. The implementation of brier score was using sckit-learn’s in-
built function. By observing the Brier scores it can be found that the
nonlinear models performed better compared to the linear models.
When using ASA status as the only input, the lowest Brier score

Figure 4: ROCCurve of Different Models Using Selected Fea-
tures and ASA-PS. The Non-Linear Models Outperformed
the LinearModels. In Particular, the RandomForest Had the
Highest AUROC Compared with the Other Models.

(0.098) was achieved by the random forest and XGBoost classifiers.
When using the selected features with ASA status as input, the
XGBoost classifier had the lowest Brier score of 0.0043.
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Figure 5: PR Curve Using the XGboost for the Three Feature
Sets.

Figure 6: PR curve of AllModels Using Selected Features and
ASA-PS.

5 DISCUSSION
Table 3 and Table 4 contained the Accuracy, Precision, Recall and F1
for all 4 models. Combined with all these metrics we got, we found
that XGboost outperformed other models. Confidence intervals
derived by bootstrapping were shown in parenthesis.

Models using the selected features had higher area under the
ROC values (XGboost 0.9318, 95% CI 0.9041 - 0.9594) than baseline
ASA-PS (XGboost 0.6787, 95% CI 0.6471 - 0.7103). Table 2 showed
that adding ASA-PS values to the selected features did not much
improve performance as compared with the selected features alone.
Including the ASA-PS with the selected features achieved an AUC
of 0.9345 (95% CI 0.9076 - 0.9613).

The recall metric showed in Table 3 and Table 4 did not reach
a high score as Precision did. Here we made a brief description
about the 3 reasons may caused this unsatisfactory results. 1) The
number of negative data points(majority class) in our datasets were
large compared to that of the positive data (minority class). We used
SMOTEmethod which can oversample the minority class to address
the question of imbalanced classification. While experiments were
done in this study to show that using SMOTE did get higher preci-
sion and recall than not using it, the shortcomings of SMOTE still
cannot be ignored. SMOTE always assigns a global neighborhood
parameter K but neglects the local distribution characteristics, thus
resulting in a greater chance of class mixture which affects classifi-
cation results. 2) The non-survivors sample size was too small(0.89%
mortality rate) which increased difficulty for machine learning to
learn. Fortunately, the database is still incorporating new cases and
a larger amount of data will be available in future experiments. 3)
The threshold setting of the predicted probability is also important.
The approach of setting weights needs to be improved in future
experiments.

Our analysis of this data furnished us with two key insights
about prediction of mortality. First, all of the bagging and boosting
models achieved high performance. No matter which specific model
or feature set(general demographic data, surgical data, and basic lab
data) were chosen, all of the models achieved area under the curve
values in the 0.67 to 0.99 range based on an extreme imbalanced
dataset. The scores (AUC, Accuracy, Precision, Recall, F1) demon-
strated the benefit of using a boosting model, XGboost - as opposed
to the traditional analysis and ASA score for early prediction of
probability of mortality. LR performed worse than other classifiers.
Second, we found that there was virtually no loss in performance if
our models were restricted to available data even without ASA-PS.
These two keys suggest that our models could be used to identify
patients that are at high risk of death while still in the hospital and
soon after the surgical procedure.

6 CONCLUSIONS
In this paper, all data used for this study were obtained from the
custom built perioperative database, which containing all patients
who have undergone surgery at West China Hospital, Sichuan
University, since July 1, 2019. And the database is still growing.
Based on these available data, we explored using Genetic Algorithm
for features selection and developed machine learning methods to
predict postoperative 30-days mortality in surgical patients aged
over 65. We successfully selected a set of features that could be used
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Table 4: Performance Metrics for All Models Using Selected Features and ASA-PS

Selected+ ASA (95% CI) Random Forests XGBoost Logistic regression MLP
Accuracy 0.9927 ( 0.9912 - 0.9942 ) 0.9937 ( 0.9922 -

0.9951 )
0.9788 ( 0.9752 - 0.9825 ) 0.9805 ( 0.9766 - 0.9844 )

Precision 0.99(0.98 - 1.0) 0.9878 ( 0.9756 - 1.0 ) 0.6584 ( 0.5455 - 0.7714 ) 0.6964 ( 0.5769 - 0.8158 )
Recall 0.7273 ( 0.6727 - 0.7818 ) 0.7727 ( 0.7273 -

0.8182 )
0.4636 ( 0.4 - 0.5273 ) 0.5 ( 0.4182 - 0.5818 )

F1 score 0.8409 ( 0.8043 - 0.8776 ) 0.8667 ( 0.8333 - 0.9 ) 0.5412 ( 0.4783 - 0.6042 ) 0.577 ( 0.5 - 0.654 )

to better predict in-hospital mortality. This group of features do
not necessitate the assistance of a clinician for score calculation in
contrast to the ASA physical status. Our selected features achieved
a good performance that was comparable to ASA-PS in that model.
By using selected available variables, the boostingmodels (XGboost)
was more accurate than other machine learning models. Our study
is a strong evidence to illustrate that machine learning models
could improve discrimination of the prediction model and identify
high risk patients, which can help guide the rational allocation
of public health care resources. The promise of using machine
learning technology in healthcare is huge. As the MLP method
performed not so well in this study, there is still a lot of room for
improvement in deep learning methods. Our hope and expectation
will be improving models and producing deep researches leveraging
unstructured data obtained from surgery in the next few years.
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